# **QUANTUM TECHNOLOGY** WHAT IT IS AND ITS IMPACT ON THE WORLD OF FINANCE



# WHY NOT BIGGER **CLASSICAL COMPUTERS?** Hitting The Limits



### **Transistor Size**

Shrinking transistor sizes approach physical limits where quantum effects increase leakage currents, challenging the distinction between on and off states.



### **Power Consumption**

Reduced transistor sizes lead to higher leakage currents, elevating static power consumption and reducing efficiency,

### **Heat Dissipation**



Higher power density in smaller chips complicates heat removal, risking thermal damage and impacting performance.

# . . . . . .

# THE END GOAL FOR QUANTUM Part of the HPC Stack

### Central



CPU: Adept at a wide range of tasks from running applications to processing complex algorithms in a sequential manner.

### Graphics



GPU: Excellent for graphics rendering and tasks requiring massive parallel processing, enhancing performance in gaming, simulations, and certain areas of research.

#### Tensor



TPU: Optimized for deep learning, offering accelerated computation for neural networks and machine learning models, significantly reducing training and inference times.

#### Quantum



QPU: Used to solve problems intractable for classical computers, with potential breakthroughs in cryptography, optimization, and simulation.



# QUANTUM COMMUNICATION





# **QUANTUM COMMUNICATIONS**

- Post Quantum Cryptography (PQC)
- Quantum Key Distribution (QKD).
  - QKD utilizes quantum entanglement, where qubits become interdependent regardless of the distance between them. Practically impossible to intercept without disturbing the entanglement.



# The Potential of Quantum



# Motivation







# 1,000,000 years of calculation









# A Quantum Computer – Several Hours of Calculation



Quantum algorithms like: Variational Quantum Eigensolver (VQE) and Quantum Phase Estimation (QPE)

■CLASSIQ

# **Near Term Adoption**



# **ENTERPRISE ADOPTION**







# A NEW ERA IN COMPUTING





**CLASSIQ** 

CONFIDENTIAL



# **Quantum Processing's Near-Term Impact**

### Industry Analysts Agree

| Preliminary                           |             |                                  | Economic valu | e <sup>1</sup> | 2035 market size | Deep dive next Economic value: 🔸 Low + Medium +++ High           |
|---------------------------------------|-------------|----------------------------------|---------------|----------------|------------------|------------------------------------------------------------------|
| Industry                              |             | Key segment for QC               | ~2025–2030    | ~2030–2035     | \$ trillion      | Value at stake with incremental impact of QC by 2035, \$ billion |
| Financial industry <sup>1</sup>       | [\$]        | Financial services               | ++            | +++            | 14.1             | 400.600                                                          |
| Global energy & materials             | ۲ <u>گ</u>  | Oil and gas                      | +             | ++             |                  |                                                                  |
|                                       |             | Sustainable energy <sup>2</sup>  | +             | +++            |                  |                                                                  |
|                                       |             | Chemicals                        | ++            | +++            | 6.1              |                                                                  |
| Travel, transport, & logistics        | ٢           | Travel, transport, and logistics | +             | +++            | 14.1             | 200-500                                                          |
| Pharmaceuticals &<br>medical products | Ц<br>Ф<br>Ц | Pharmaceuticals                  | ++            | +++            | 3.1              | 200-500                                                          |
| Advanced<br>industries                | [bd]        | Automotive                       | +             | ++             | 8.3              | 70-400                                                           |
|                                       |             | Aerospace and defense            | +             | ++             |                  |                                                                  |
|                                       |             | Advanced electronics             | +             | ++             |                  |                                                                  |
|                                       |             | Semiconductors                   | +             | ++             |                  |                                                                  |
| Insurance                             | N           | Insurance                        | +             | ++             |                  |                                                                  |
| Telecommunications,                   | •           | Telecommunications               | +             | ++             |                  | 50–100                                                           |
| media, & technology                   |             | Media                            | +             | +              |                  |                                                                  |
|                                       |             |                                  |               |                | Total            | 900-<br>2,000                                                    |

value. Insurance is not include

narket is expected to grow rapidly from 2022–2035; however, the 2035 market size is influenced by

v analysis: Oxford Economics

- Finance
- Chemicals
- Pharmaceuticals
- Automotive

These industries stand to gain between \$0.9-\$2 trillion in value by 2035.

- McKinsey: Quantum Technology Monitor, April 2024

#### 

## The industries likeliest to see the earliest economic impact from quantum processing:

13

Travel, Transportation, & Logistics



|        | Manufacturing        | Chemistry                         | Pharma                          | Finance                |
|--------|----------------------|-----------------------------------|---------------------------------|------------------------|
| QAOA   | Job shop scheduling  | Logistics optimization            | Drug component selection        | Portfolio optimization |
| HHL    | Machine optimization | Combustion control                | Drug manufacturing optimization | Portfolio optimization |
| QML    | Anomaly detection    | Molecule ground state calculation | Characterizing new<br>drugs     | Fraud detection        |
| Grover | SAT Problems         | Molecular Distance                | Structure finding               | Database search        |



# Other

General optimization problems

**CFD** simulation

Image classification

**1**4

Cryptography

# QUANTUM AS STRATEGIC NATIONAL TECHNOLOGY



Announced governmental funding





Page 

# WHAT & WHY OF QUANTUM PROCESSING?

![](_page_16_Picture_2.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_17_Figure_1.jpeg)

### **CLASSIQ**

19

![](_page_18_Picture_1.jpeg)

![](_page_18_Picture_2.jpeg)

# '1' '0' + '1' '0'

![](_page_18_Picture_4.jpeg)

![](_page_18_Picture_5.jpeg)

![](_page_19_Picture_0.jpeg)

0

# Entanglement

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_3.jpeg)

![](_page_19_Picture_4.jpeg)

![](_page_19_Picture_6.jpeg)

# WHY QUANTUM PROCESSING?

# A New Compute Resource

![](_page_20_Figure_3.jpeg)

**CLASSIQ** 

![](_page_20_Picture_5.jpeg)

![](_page_21_Picture_0.jpeg)

# Qubits

1 qubit 2 qubits  $C_1$  $b_1$ 00  $C_2$  $b_2$  $a_1$ 0 01  $a_2$ 1 *b*<sub>3</sub> 10 11  $b_4$  $C_{2^n-1}$  $|a_1|^2 + |a_2|^2 = 1$  $|b_1|^2 + |b_2|^2 + |b_3|^2 + |b_4|^2 = 1$ 

# n qubits 00 ... 0 00 ... 1 11...0 11...1 $|c_i|^2 = 1$

![](_page_21_Picture_5.jpeg)

![](_page_22_Picture_0.jpeg)

# IBM's quantum computing roadmap targets a 4000-qubit device this year

![](_page_22_Picture_2.jpeg)

| <b>p</b> | Qubits |
|----------|--------|
|          | 1      |
|          | 2      |
|          | 3      |
|          | 10     |
|          | 16     |
|          | 20     |
|          | 30     |
|          | 35     |
| > Number | 100    |
| > Numbe  | 280    |

![](_page_22_Picture_4.jpeg)

# Number of arallel states 2 4 8 1024 65,536 1,048,576 ~1 Billion ~34 Billion of atoms on the planet of atoms in universe

# QUANTUM HARDWARE DEVELOPMENT

![](_page_23_Figure_1.jpeg)

**CLASSIQ** 

# BUT THERE'S 'MOORE': STEADY GROWTH IN QUBIT COUNTS

![](_page_24_Figure_1.jpeg)

--IBM --IQM --Fujitsu --Quantware --Rigetti --Xanadu • PsiQuantum --Alpine Quantum --IonQ --Quantinuum ---Cold Quanta Atom Computing --Pasqal --QuEra --Intel

![](_page_25_Picture_0.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_26_Picture_0.jpeg)

7

# The Future

![](_page_26_Picture_2.jpeg)

![](_page_26_Picture_3.jpeg)

![](_page_26_Picture_7.jpeg)

# **Classical Interface**

### n-bit classical input: 00110001011101010101

### n-bit classical output: 10101011110110001000

Measurement

### State Preparation

2<sup>n</sup> internal, inaccessible computation paths

#### **CLASSIQ**

![](_page_27_Picture_7.jpeg)

# HOW DO YOU PROGRAM A QUANTUM COMPUTER?

![](_page_28_Figure_1.jpeg)

Writing software for quantum computers is a little bit like electronic design and a little bit like assembly language

To create a quantum program, one specifies which qubits (wires) connect to which gates (square blocks)

This is quantum assembly language

![](_page_28_Figure_5.jpeg)

![](_page_28_Picture_8.jpeg)

# THE SOFTWARE CHALLENGE

# Punch Card, 1965

#### EFERICES CONTRACTS THURSDAY 0 0 0 0 0 0 11 1 222 333 333333 333 33 44444 444444 5555 s 5 11111 111111

![](_page_29_Figure_5.jpeg)

![](_page_30_Picture_0.jpeg)

# **REQUIRES A WHOLISTIC APPROACH**

Quantum coding requires many considerations:

#### **Possible Quantum Implementations**

- What quantum algorithms can address the problem?
- What hardware is available to run this algorithm? ٠
- Could the algorithm run more efficiently on different hardware? ٠
- Do I know how to code in the language of the targeted ٠ hardware (Qiskit, Q#, Cirq, etc.)?

#### **Operational Context**

- What are the tradeoffs between algorithmic efficiency and solution accuracy?
- How do hardware characteristics affect possible algorithmic • implementations and overall resource use?
- What algorithms should I use and how do I modify my code to run on near-term quantum computers?

# Problem

Space

Context of Situation

#### ■CLASSIQ

# Solution

Space

![](_page_30_Figure_19.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_31_Figure_2.jpeg)

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

# Automatic

![](_page_32_Figure_1.jpeg)

Page **CLASSIQ** 

# FINANCIAL SERVICES IMPLEMENTATIONS

![](_page_33_Picture_1.jpeg)

![](_page_34_Picture_0.jpeg)

**■**CLASSIQ

# SentimentLearning Ve S e 50 -----High S e Safe ത

# QUANTUM COMPUTING SOFTWARE

![](_page_35_Picture_1.jpeg)

![](_page_36_Picture_0.jpeg)

![](_page_37_Picture_0.jpeg)

# **HELPFUL LINKS**

### **Technical Documents**

Quantum computing for finance JP Morgan <a href="https://arxiv.org/abs/2307.11230">https://arxiv.org/abs/2307.11230</a> Science Direct <a href="https://www.sciencedirect.com/science/article/pii/S2405428318300571">https://www.sciencedirect.com/science/article/pii/S2405428318300571</a>

### **General Interest Quantum Computing & Regulatory Impact**

Deloitte https://www2.deloitte.com/us/en/insights/industry/financial-services/financial-services-industry-predictions/2023/quantum-computing-in-finance.html McKinsey https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/quantum-technology-use-cases-as-fuel-for-value-in-finance WEF & FCA on quantum security https://www.regulationtomorrow.com/eu/world-economic-forum-and-fca-joint-white-paper-on-quantum-security-for-the-financial-sector/ FINRA https://www.finra.org/rules-guidance/key-topics/fintech/report/quantum-computing/regulatory-considerations

### **From Classiq**

Finance https://www.classiq.io/industries/industries-finance

Book a demo https://www.classiq.io/schedule-a-demo

Citi https://www.classiq.io/insights/citi-and-classiq-advance-quantum-solutions-for-portfolio-optimization-using-amazon-braket

Intesa Sanpaolo https://arxiv.org/pdf/2402.05574

www.classiq.io

![](_page_37_Picture_13.jpeg)